Prediction models: Shall we stop developing them?

Karel GM Moons
UMC Utrecht
Julius Center for Health Sciences and Primary Care
Cochrane Netherlands
EiC: BMC Diagnostic & Prognostic Research
www.juliuscenter.nl
Experiences from various consortia:

– BMJ 2009 – series on prognostic modelling
– Plos Med + BMJ 2013 -- PROGRESS series
– HEART 2012 2 papers
– TRIPOD guideline 2015
– PROBAST 2019
Prediction

• Prediction = foreseeing / foretelling
 ... (the probability) of something that is yet unknown

• In medicine:
 1. Probability of a future event/outcome = **prognosis**

 2. Probability of the result of a more invasive/costly reference (gold) standard that is not yet done = **diagnosis**
What is a prediction model?

Any combination ≥ 2 predictors (variables/covariates/determinants)
\rightarrow convert observed values to absolute probability...

- ... of *having* a particular disease/disorder \rightarrow *diagnosis*

- ... of *developing* particular event/outcome within a certain time (hours, days, weeks, years) \rightarrow *prognosis*

- Not necessarily patients --- subjects at risk of developing outcome
Prediction modelling is hot!

- 100,000s (!) prediction models
- Numerous models for same outcome or target population
Systematic reviews of prediction models

• >110 models for prostate cancer (Shariat 2008)
• >100 models for Traumatic Brain Injury (Perel 2006)
• 83 models for stroke (Counsell 2001)
• 54 models for breast cancer (Altman 2009)
• 43 models for type 2 diabetes (Collins 2011; Dieren 2012)
• 31 models for osteoporotic fracture (Steurer 2011)
• 29 models in reproductive medicine (Leushuis 2009)
• 26 models for hospital readmission (Kansagara 2011)
• >25 models for length of stay in cardiac surgery (Ettema 2010)

• >350 models for prediction of CVD outcomes in general population (Damen, BMJ 2016)
Wilde voorspellingen over uw gezondheid

Er is een overweldigend aanbod aan apps en sites die voorspellen of iemand gezondheidsrisico's heeft. Of die hout snijden? Wie zal het zeggen?

Door Laurens Verhagen Foto Marios Haarmans

Volgens Moons zijn er zo'n veertigduizend bloed- en medische medische testschijven en per jaar worden vier miljoen papieren gepubliceerd. Daarmee zijn, in het tijdperk van digitalisering, nieuwe denkpatronen en nieuwe toepassingen van het medische systeem.
Why using prediction models?

• ... Not meant to replace physicians, but to complement their clinical intuition!!!!!!

• Assumption:
 – They provide accurately + objectively estimated probabilities...
 – ...to improve medical decision making ...
 – ... and thus subject’s outcomes
 – ... and thus cost-effectiveness of health care
What evidence do we need before using prediction models?

4 steps in prediction modelling

• 1. Developing prediction model from a particular (your) dataset

• 2. Validate/test the predictive accuracy of previously developed model in (data of) other subjects

• 3. Adjust/tailor model to local situation/care setting using the validation dataset

• 4. Quantify impact of using a model on decision making and patient outcomes
1. Developing a prediction model from your dataset

Don’t

Don’t develop a model from your data – skip this phase

1. Suppress your reflex

 – Hard: we finally learned ‘trics’ to develop models (standard software)

 – ‘Own’ model makes us famous (Apgar; Goldman; Gail; Wells)

 • Validation of somebody else’s model is only to support citation index of others
Prediction modelling is hot!

Majority is newly developed models – few validation studies
Numerous systematic Reviews

• Regardless clinical domain: numerous models developed → few validated

• Too much focus on developing → hardly on validation

• Like biomarker world: discovery driven → validation uninteresting (‘losers’/non-innovative)

• But: with all these models for same outcome or target population: we/professionals have ‘no clue’ which model to use in which situation
 – Is our healthcare better of with yet another developed model?
So when we are behind our dataset and aimed to develop a prediction model

... Starts with ...

... NOT developing a model...

... First search, review and validate existing models for your domain, target population or outcome at interest
When behind our dataset and aimed to develop a prediction model

• There are (almost) always existing models that apply to your patient population/outcome
 – We hardly search for existing models to first test on our datasets
 – We rather pursue to develop yet another (own) model

• Test and directly compare (!) the predictive performance of these models on your data set = comparative (external) validation
Defining review question and developing criteria for including studies

Searching for studies

Selecting studies and collecting data

Assessing risk of bias and applicability in included studies

Analysing data and undertaking meta-analyses

Interpreting results and drawing conclusions

Reporting of systematic reviews

Assessing risk of bias of systematic reviews

Guidance for defining review question, design of the review and checklist for critical appraisal and data extraction (CHARMS) – Moons et al 2014 PLOS Med

Search filters for prediction studies – Geersing et al. 2012 PLOS One; Ingui et al. 2002 J Am Med Inform Assoc; Wong et al. 2003 AMIA Annual Symp Proc

Guidance for defining review question, design of the review and checklist for critical appraisal and data extraction (CHARMS) – Moons et al 2014 PLOS Med

Transparent reporting of systematic reviews and meta-analysis (PRISMA) Moher et al. PLOS Med 2009;

Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist

Karel G. M. Moons1,5, Joris A. H. de Groot1,5, Walter Bouwmeester1, Yvonne Vergouwe1, Susan Mallett2. Douglas G. Altman3, Johannes B. Reitsma1, Gary S. Collins3

OPEN ACCESS Freely available online

Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews

Geert-Jan Geersing1,*, Walter Bouwmeester1,*, Peter Zuithoff1, Rene Spijker2,4, Mariska Leeflang3,4

Annals of Internal Medicine

RESEARCH AND REPORTING METHODS

PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration

Karel G.M. Moons, PhD; Robert F. Wolff, MD; Richard D. Riley, PhD; Penny F. Whiting, PhD; Marie Westwood, PhD; Gary S. Collins, PhD; Johannes B. Reitsma, MD, PhD; Jos Kleijnen, MD, PhD; and Sue Mallett, DPhil

A guide to systematic review and meta-analysis of prediction model performance

Thomas P.A. Debray†, Johanna A. A. G. Damen†, Kym I. E. Snell, Joie Ensor, Lotty Hooft, Johannes Reitsma, Richard D. Riley†, Karel G. M. Moons†

Meta-analysis and aggregation of multiple published prediction models

Thomas P. A. Debraya,‡, Hendrik Koffijberga, Daan Nieboerb, Yvonne Vergouwe,b Ewout W. Steyerbergb and Karel G. M. Moonsa
Basic & Advanced Courses
Systematic Reviews, Meta Analysis

Face to Face & Online
Accessible from all over the world
More than 50 courses...

- Systematic Reviews of Randomised Intervention Studies
- Systematic Reviews of Diagnostic Studies
- Systematic Reviews of Prognostic Studies
- Meta Analysis with Individual Participants Data
-and many more

www.msc-epidemiology.eu www.msc-epidemiology.online
Hence ...

... prognostic/prediction studies are hot

... SR’s and notably MA of prognostic studies as well

- highly desired and well received by journals/policy makers

- it is time to first systematically summarise existing evidence in your field before developing ‘your own model’
You are still behind your dataset and aimed to develop a prediction model

You have done your review

Selected the (most) relevant models for your interest

Published your review in a MAJOR journal
 (Most prediction model papers do not appear in such journals!)

And then.....
What evidence do we need before using prediction models?

4 Steps in prediction modelling

• 1. Developing prediction model from a particular dataset

• 2. Validate/test predictive accuracy of previously developed model in your data

• 3. Adjust/tailor model to local situation/care setting using the validation dataset

• 4. Quantify impact of using a model on decision making and patient outcomes
Validating

• Test and directly compare (!) the predictive performance of the selected models, on your data set = (external) validation
2. Model validation studies: Don’ts

BMJ series 2009; HEART series 2012; PROGRES series BMJ + PLOS MED 2013

- Aim: to demonstrate predictive performance of competing models in (data of) subjects that were not used to develop model – direct comparison!
 - Calibration, discrimination, (re)classification

- Validating model(s) is not ...
 - ...Repeat one’s analysis in your data → to check whether you find same predictors, regression coefficients, predictive performance or
 - ...Fit the previously found predictors and compare your performance with performance in development set
2. Model validation studies: Do’s

- Use original developed model → apply ‘as is’ to your data → compare predicted with observed outcomes
 - Discrimination, calibration and (re)classification

- Validation studies require that developed prediction models properly reported
 - Original beta’s – plus intercept / baseline hazard
 - Not just simplified score (too often done)

 - Clear definition and measurement method of predictors + outcome

 - Someone can indeed validate and use the model

BMJ series 2009; HEART series 2012; PROGRES series BMJ + PLOS MED 2013
Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement

Karel G.M. Moons, PhD; Douglas G. Altman, DSc; Johannes B. Reitsma, MD, PhD; John P.A. Ioannidis, MD, DSc; Petra Macaskill, PhD; Ewout W. Steyerberg, PhD; Andrew J. Vickers, PhD; David F. Ransohoff, MD; and Gary S. Collins, PhD

www.tripod-statement.org
Types of Validation Studies

1. Temporal validation
 - Often same setting, measurement methods, investigators only later in time
 • Many similarities \rightarrow very ‘high’ chance of good performance
 - If large dataset: Split over time
 - Don’t randomly split – no difference but chance
2. Geographic validation
 – Validation in other centers/region; often other investigators
 – Often other measurement methods
 – If multicenter or combination of datasets (= IPD meta analysis)
 • split sample by center/region

3. Setting/domain/subgroup validation
 – Secondary → primary care
 – Adults → children
 – Men → women
 – first VT → recurrent VT
Aim of validation studies is not to find similar predictive accuracy as in development set...

- But to find satisfactory performance in validation set
- AUC of 0.60 is not per se bad
 - Depends on accepted consequences of false predictions/decisions
 - You can always find low or high risk group — despite small

YES: commonly find poorer performance when validating existing model in your data

- Still suppress reflex to develop a new model – be patient!

Types of Validation Studies

Typical Model Validation Result

- Systematically too high predictions
 - Higher outcome frequency in development set
 - Intercept/baseline hazard too high for new subjects
Typical Model Validation Result

Slope plot < 1.0
- Low prob too low
- High prob too high
 - Typical overfitted model in development set
 - Too extreme regression coefficients (OR/HR)
Poor validation = expected

- Different outcome occurrence (usually lower)
 - Due to improvements in care
- Different patients (case mix)
- Different definition of predictors
- Improvement in measurements: e.g. imaging tests
 - Previous CTs less accurate than spiral CT
- Original model missed important predictor

BMJ Open Empirical evidence of the impact of study characteristics on the performance of prediction models: a meta-epidemiological study

Johanna A G Damen,1,2 Thomas P A Debray,1,2 Romin Pajouheshnia,2
Johannes B Reitsma,1,2 Rob J P M Scholten,1,2 Karel G M Moons,1,2 Lotty Hooft1,2
A new framework to enhance the interpretation of external validation studies of clinical prediction models

Thomas P.A. Debraya,*, Yvonne Vergouweb, Hendrik Koffijberga, Daan Nieboerb, Ewout W. Steyerbergb,1, Karel G.M. Moonsa,1

External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges

Richard D Riley,1 Joie Ensom,1 Kym I E Snell,2 Thomas P A Debray,3,4 Doug G Altman,5 Karel G M Moons,3,4 Gary S Collins5

Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model

Kym I.E. Snella, Harry Huab, Thomas P.A. Debrayc,d, Joie Ensome, Maxime P. Lookf, Karel G.M. Moonse,d, Richard D. Rileyc,e,*

BMJ Open Empirical evidence of the impact of study characteristics on the performance of prediction models: a meta-epidemiological study

Johanna A A G Damen,1,2 Thomas P A Debray,1,2 Romin Pajouheshnia,2 Johannes B Reitsma,1,2 Rob J P M Scholten,1,2 Karel G M Moons,1,2 Lotty Hooft}
Poor validation = expected

• No matter what reason for poor validation – developing immediately another model means:
 – Neglecting previous models/studies
 – Prediction research becomes completely particularistic
 • Every country, setting, hospital, subgroup ‘own’ model
 – Validation datasets often smaller → even less generalisable models
 – Perhaps new model needed: but likely not!

• Easy to adjust existing model using validation dataset
 – rather than fitting new model → notably when validation set is small(er)
What evidence do we need to start using prediction models in practice?

Steps in prediction modelling

1. Developing prediction model from a particular dataset
2. Validate/test the predictive accuracy of previously developed model in (data of) other subjects
3. Adjust/tailor model to local situation/care setting using the validation dataset
4. Quantify impact of using a model on decision making and patient outcomes
3. Adjusting prediction models

- Adjusting can be simple and ranges from:
 - Simple adjustment of base line risk/hazard (intercept)
 - Adjusting regression coefficients of predictors in model
 - Adding previously missed or new predictors/biomarkers
 - Refitting
3. Adjusting prediction models

- Adjusting for difference in overall outcome frequency (intercept adjustment) is often sufficient

- If (also) slope different → adjust predictor weights
3. Adjusting prediction models

- Updating is particularly important when:
 - new predictors found → added to existing models
 - CRP to Framingham risk model
 - new era / new setting

- Updating done after (!) a model’s (external) validation → if unsatisfactory accuracy
 - Not recommend updating without first validating
If validation of existing models in our data is unsatisfactory ...

...and updating could not fix the job...then

... Develop our new model
What evidence do we need before using prediction models?

4 Steps in prediction modelling

• 1. Developing prediction model from a particular dataset
 • 2. Validate/test the predictive accuracy of previously developed model in (data of) other subjects
 • 3. Adjust/tailor model to local situation/care setting using the validation dataset
 • 4. Quantify impact of using a model on decision making and patient outcomes
1. Developing a prediction model

No real challenges anymore

So much literature:

What evidence do we need before using prediction models?

4 Steps in prediction modelling

• 1. Developing prediction model
• 2. Validate the predictive accuracy of developed model in (data of) other subjects
• 3. Adjust/tailor model to local situation/care setting
• 4. Quantify impact of using a model on decision making and patient outcomes
4. Model impact studies

- Recall assumption of prediction models:
 - accurately estimated probabilities...
 - ...improve physicians’ decision making/behaviour...
 - ... and thus patient outcome

- ... studied in so-called model impact studies
4. Model impact studies

CAMPBELL BMJ 2000; REILLY+EVANS ANN INT M. 2006; MOONS BMJ 2009 + HEART 2012

- **Aim:** Whether actual use of prediction model truly improves ...
 - ... Decision making behaviour (treatment indications) ...
 - ... Patient outcome or healthcare costs ...
 - ... as compared to not using such model

- **Impact studies are comparative, intervention studies**
 - Intervention = model use + subsequent (treatment) actions based on model predictions
 - In sharp (!) contrast to previous prediction model phases
4. Model impact studies

• Quantifying effects on patient outcomes:
 – Reflex = randomized comparison

 – This time good reflex: best design indeed RCT

 • Preferably cluster RCT (e.g. stepped wedge) trial

 • Not randomising patients
 – Learning effects of doctors \rightarrow reduced contrast

 • Randomising practices
 – Less contamination across doctors in same practice \rightarrow reduced contrast
4. Model impact studies

- Disadvantages Cluster RCTs:
 - Long duration → Certainly if patient outcomes occur late in time
 - Large studies (costs)
 - Prediction model always studied in combination with current treatments
 - If new treatment → new RCT

- 100,000’s clinical prediction models → increase per day

- Not enough resources - budget + subjects to study them all in long term, expensive cluster RCT
4. Model impact studies

Moons BMJ 2009 + Heart 2012; Hendriksen JTH 2013

• Need alternative approaches to separate chaff from wheat

• To determine which models are completely useless and which may ...
 – …Change decision making
 – … Change patient outcomes

• Simple approaches to determine whether a model may/may not change decision making + patient outcomes
4. Model impact studies

Moons BMJ 2009 + Heart 2012; Hendriksen JTH 2013

• 1. Cross sectional randomised study

 – Treatment decision = outcome (no f-up)

 – Outcome never changes if physicians/patients don’t change behavior based on model predictions

 – If changes decision making → Still need to quantify whether change in therapeutic decisions actually change patient outcomes
4. Model impact studies

Moons BMJ 2009 + Heart 2012; Hendriksen JTH 2013

2. Risk-Benefit analysis

- Risk-Benefit (markov) models:

 • Linked evidence approach -- combining Model’s predictive accuracy studies + Treatment effect evidence

 • Use predictive probabilities of (validated) model
 +

 • Results of benefits + risks of existing therapies for that disorder (ideally obtained from RCTs)

 • To quantify effect of actually using the model with model-directed therapies on patient outcome (+ cost-effectiveness)
4. Model impact studies

Moons BMJ 2009 + Heart 2012; Hendriksen JTH 2013

- Indication of expected risks/benefits when introducing model combined with subsequent therapies
 - + test specific scenarios (e.g. multiple treatment-probability thresholds) or subgroups
 - + whether empirical study is (not) indicated – chaff from wheat
 - + How to enrich RCT design

SYSTEMATIC REVIEW
Decision analysis to complete diagnostic research by closing the gap between test characteristics and cost-effectiveness
Joanna D. Schaafsmaa*, Yolanda van der Graafb, Gabriel J.E. Rinkelb, Erik Buskenc

RESEARCH ARTICLE
From accuracy to patient outcome and cost-effectiveness evaluations of diagnostic tests and biomarkers: an exemplary modelling study
Hendrik Koffijberg1*, Bas van Zaana2 and Karel GM Moons1,2
3. Before-After study
 - Compare patient outcomes in period before introducing model to the period after introducing
 - E.g. Wells rule for DVT; Ottawa ankle/knee rules

4. Geographical comparison or historical control group
 - Disadvantages 3+4: both observational
 - Geographical differences or time changes in therapeutic guidelines/therapies
 - Confounding by indication / case mix differences → adjustment in analysis (like all non-randomized intervention studies)

4. Model impact studies
 Moons BMJ 2009 + Heart 2012; Hendriksen JTH 2013
Take home messages

• Indeed theoretically 4 consecutive phases of prediction modelling
 – Development, validation, adjusting (updating), impact assessment

• But way too much developed models for same outcome or target population
 – Too much focus on development → ‘innovation’ / ‘own’ model

• If behind your dataset: don’t start with phase 1 = developing a model
 – Do first good systematic review (SR) -- guidance available
 – Then validate these existing models
Take home messages

• **Validation is not refitting original model or repeat analysis of development study in your data**

 – Testing the model ‘as it is’ in your data

 – Requires proper reporting of original developed models, plus how predictors and outcomes defined/measured

 – not reporting of simplified scores only

 – No random-split sample validation

 – Rather by time, geography, setting-clinical domain

 – Validation is not aiming to find same predictive accuracy as in development set → rather: acceptable accuracy
Take home messages

• Validation often shows poor accuracy don’t panic try update first (easy) suppress your ‘development reflex’

• If still after updating unsatisfactory performance
 – Try adjusting original model based on your data

• If remains unsatisfactory: develop new model + validate
 – Development No real challenges anymore
Take home messages

• Impact assessment – not directly jump to RCT
 – Use alternative approaches to see whether model may lead to improved decision making + patient outcome

• No developed model applied/guideline without at least 1 external validation → preferably with impact assessment

• Validation, Updating, Development, Impact → Report your modelling study well

Annals of Internal Medicine Research and Reporting Methods

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration

Karel G.M. Moons, PhD; Douglas G. Altman, DSc; Johannes B. Reitsma, MD, PhD; John P.A. Ioannidis, MD, DSc; Petra Macaskill, PhD; Ewout W. Steyerberg, PhD; Andrew J. Vickers, PhD; David F. Ransohoff, MD; and Gary S. Collins, PhD
Take home messages

Preferred steps in prediction modelling

1. Systematic review existing prediction model for your domain or outcome of interest

2. Validate/test the predictive accuracy of these retrieved models in (data of) other subjects

3. Adjust/tailor model to local situation using the validation dataset

4. Developing prediction model from a particular dataset

5. Quantify impact of using a model on decision making and patient outcomes

6. If pass the above steps – empirical impact study
Next phase: Individual Participant Data (meta-) analyses

Reporting of artificial intelligence prediction models

Data-driven technologies that form the basis of the digital health-care revolution provide potentially important opportunities to deliver improvements in individual care and to advance innovation in medical research. Digital health technologies include mobile devices and health apps (m-health), e-health

*Gary S Collins, Karel G M Moons
Thank you for your attention
Basic & Advanced Courses

Face to Face & Online
Accessible from all over the world
More than 50 courses...

- Basic and Modern Statistical methods
- Advanced Diagnostic Research
- Prognostic research
- Meta Analysis with Individual Participants Data

www.msc-epidemiology.eu www.msc-epidemiology.online
Gentlemen, Choose Your Models

Models are fine and statistics are dandy
But don’t choose too quickly just cause they’re handy
Stick to a model that’s been through the mill
Don’t try something new just for the thrill
A new shiny model is full of allure
But making it work is no sinecure.

The more complex the merrier does not follow
The voluminous output may be hard to swallow
Too many variables and too few cases
Is too much like duelling at ten paces
What’s fit may be error rather than trend
And shrinkage will get you in the end.

Know what you’re doing and do it well
Replicable findings are easy to sell
Be willing to progress one step at a time
A counterfeit dollar’s worth less than a dime
Now that I’ve warned you I’m ready to stop
And let you get back to tending the shop.