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Pleotropic mapping for genome-wide association studies
using group variable selection

I Pleiotropy: genetic variants which affect multiple different
complex diseases

I Example: genetic variants which affect both Breast and Thyroid
cancer.

I Results from GWAS suggest that complex diseases are often
affected by many variants with small effects (known as
polygenicity)

I Aims:

I statistical method to leverage pleiotropic effects

I incoporate prior pathway knowledge to increase statistical
power and identify important risk variants.



Genomics Data: Wide Data, High Dimensional Data

We have too many variables, prone to overfitting. Need to remove
variable, or regularize, or both

I Main constraint: situation with p > n

I Strong colinearity among the variables.



Group structures within the data

I Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.

↪→ These genes can add up to have a larger effect

↪→ can be detected as a group (i.e., at a pathway or gene
set/module level).

We consider variables are divided into groups:

I Example p: SNPs grouped into K genes

X = [SNP1, . . . + SNPk︸                 ︷︷                 ︸
gene1

|SNPk+1,SNPk+2, . . . ,SNPh︸                              ︷︷                              ︸
gene2

| . . . |SNPl+1, . . . ,SNPp︸                 ︷︷                 ︸
geneK

]

I Example p: genes grouped into K pathways/modules (Xj = genej)

X = [X1,X2, . . . ,Xk︸           ︷︷           ︸
M1

|Xk+1,Xk+2, . . . ,Xh︸                 ︷︷                 ︸
M2

| . . . |Xl+1,Xl+2, . . . ,Xp︸               ︷︷               ︸
MK

]
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Our contribution for Multivariate phenotypes

I Select group variables taking into account the data structures;
all the variables within a group are selected otherwise none of
them are selected

I Combine both sparsity of groups and within each group; only
relevant variables within a group are selected



Our contribution for Multivariate phenotypes
Frequentist Approaches: Partial Least Squares (PLS)

I Sparse Group PLS : SNP ⊂ Gene or Gene ⊂ Pathways

Liquet B., Lafaye de Micheaux P., Hejblum B. and Thiebaut R., (2016) Group
and Sparse Group Partial Least Square Approaches Applied in Genomics
Context. Bioinformatics, 32(1), 35–42.

I Sparse Group subgroup PLS : SNP ⊂ Gene ⊂ Pathways

M. Sutton, R. Thiebaut, and B. Liquet. (2018) Sparse group subgroup Partial
Least Squares with application to genomics data. Statistics in Medicine.

Main ideas:

I combining L1 and L2 penalties into the optimization function

I Sparse Group Penalties:

λ1

G∑
g=1

√
pg ||βg ||2 + λ2||β||1
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Our contribution for Multivariate phenotypes

Bayesian Approaches: Multivariate regression model

I Bayesian group lasso model with spike and slab priors

Liquet, B., Mengersen, K., Pettitt, A. N. and Sutton, M. (2016). *Bayesian
Variable Selection Regression Of Multivariate Responses For Group Data*
Bayesian Analysis. Volume 12, Number 4 (2017), 1039-1067.

Main ideas:

I spike and slab priors providing variable selection at the group
level.

I hierarchical spike and slab prior structure to select variables
both at the group level and within each group.



Extention for Pleiotropy: Model for multiple GWAS

I Suppose we have data from K independent GWAS datasets,
D = D1 ∪ · · · ∪ DK , where Dk = ({y1, x1}, . . . , {ynk , xnk })

I yik ∈ {0, 1} denotes the phenotype of the k th study

I xik ∈ R
p is the vector with corresponding p SNPs.

I Logistic regression model

Logit(P(yik = 1|xik ) = xT
ikβ·k for k = 1, . . . ,K ,

I β·k ∈ R
p the regression coefficients for the k th GWAS.

I Let βj· ∈ R
K , j = 1, . . . , p, the vector of K regression coefficients

corresponding to the jth SNP over the K GWAS.



Group Structure

I SNPs can be partitioned into G groups (genes or Pathways)

I Let πg, g = 1, . . . ,G the set of SNPs contained in the gth group
with pg = |πg |.

I Matrix of all regression coefficients as
B = (β·1, . . . ,β·K ) = (β1·, . . . ,βp·)

T .



Frequentist Approach
I The log likelihood for the combined datasets:

p(D | B) =
K∑

k=1

Lk where Lk Log-Likelihood of study k

I The penalised likelihood estimate

B̂ = argmin
B∈Rp×K

− K∑
k=1

Lk + λ1‖B‖G2,1 + λ2‖B‖`2,1

 (1)

I G2,1-norm penalty ‖B‖G2,1 =
∑G

g=1

√∑
i∈πg

∑K
j=1 β

2
ik

I `2,1-norm penalty ‖B‖`2,1 =
∑p

i=1

√∑K
k=1 β

2
ik respectively.

I The G2,1-norm fixes the group structure across studies and
encourages sparsity at a gene level.

I The `2,1-norm which allows sparsity within a group.



Inference

I Inference using the alternating direction method of multipliers
algorithm (ADMM).

I Novel approach for identifying pleiotropic effects as it accounts
for gene specific and SNP specific effects using a variable
selection approach.

I The method is only capable of producing a point estimate of B
and acurrate estimation of the variance for these parameters is
not easily given.



Bayesian Logistic regression with multivariate spike and
slab prior: LogitMBGL-SS

I Let γ = (γ1, . . . , γp)T indicate the association status for SNPs
where γj = 1 indicates that the jth SNP is associated to all K
traits.

I Spike and slab prior for the jth SNP βj· ∈ R
K ,

βj· ∼ (1 − γj)NK (0, τ2
j V) + γjδ0(βj·)

τ2
j ∼ Gamma

(
K + 1

2
,
λ

2

)
,

V ∼ IW (d,Q),

γj ∼ Bernolli(α0)

α0 ∼ Beta(a, b)

for j = 1, . . . , p, where δ0(βj) denotes a point mass at 0 ∈ RK .

I Here, V ∈ RK×K is a covariance matrix modeling the covariance
of the SNP effect on the traits.



Extension

I Should perform well when the SNPs are independent.

I GWAS datasets: strong correlations that can occur between
SNPs within the same gene.

I Solution: reparameterise the coefficeints to handle the sparsity
at a gene grouping level and individual feature level separately.

I τ ∈ Rp to model individual sparsity

I b(g) ∈ RpgK with b(g) = (b(g)T

1 , . . . ,b(g)T

pg
) where b(g)

j ∈ R
K for

group sparsity.

βj· = τjb
(g)
j , where τj > 0, for all j ∈ πg.



Bayesian Logistic regression using multivariate sparse
group selection with spike and slab priors

βj· = τjb
(g)
j , where τj > 0, for all j ∈ πg.

We assume the following multivariate spike and slab

b(g) ∼ (1 − α0)NpgK (0, Ipg ⊗ V) + α0δ0(b(g))

τj ∼ (1 − α1)N+
(
0, s2

)
+ α1δ0(τj),

α0 ∼ Beta(a1, a2)

α1 ∼ Beta(c1, c2)

s2 ∼ InvGamma(1, t)

for j ∈ πg and g = 1, . . . ,G



Signal recovery:

(i) gmt: Grouped multi-task penalised logistic regression
(λ1 > 0, λ2 = 0) using G2,1-norm

(ii) smt: Sparse multi-task penalid penalised logistic regression
(λ1 = 0, λ2 > 0 ) using `2,1-norm

(iii) sgmt: Sparse group multi-task penalised logistic regression
(λ1 > 0, λ2 > 0 )

(iv) logitmbgl: Bayesian logistic regression using multivariate group
lasso with spike and slab prior

(v) logitmbsgs: Bayesian logistic regression using multivariate
sparse group selection with spike and slab prior



Results: Frequentist

Study 1 Study 2
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Results: Bayesian

Study 1 Study 2

MBSGS Study 1 MBSGS Study 2

MBGL Study 1 MBGL Study 2
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Main Conclusion on the simulation studies

I The penalised approaches perform reasonably well in variable
selection but the reconstructed signal is underestimated.

I In general, the penalised likelihood methods suffer in terms of false
negatives, selecting more variables to be nonzero than the Bayesian
methods.

I The Bayesian methods perform the best in terms of signal recovery
measured by the `1 error and variable selection performance metrics.

I The penalised likelihood approaches are computationally efficient
using alternating direction method of multipliers algorithm

I Simulation results suggest that when computationally possible the
Bayesian estimators should be used.

I The multivariate Bayesian sparse group selection with spike and slab
prior performed the best in terms of signal recovery.

I The Bayesian method provides a natural method for quantifying the
variability of the estimated coefficients.



What Next ?

I Application on real data: case/control studies

I Breast Cancer and Thyroide Cancer

I Thyroide Cancer (482 case, 463 control)

I Breast Cancer (1172 case, 1125 control)

I 6677 SNPs from 618 genes from 10 non-overlapping gene
pathways.
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