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Pleotropic mapping for genome-wide association studies
using group variable selection

» Pleiotropy: genetic variants which affect multiple different
complex diseases

» Example: genetic variants which affect both Breast and Thyroid
cancer.

» Results from GWAS suggest that complex diseases are often
affected by many variants with small effects (known as

polygenicity)

» Aims:

» statistical method to leverage pleiotropic effects

» incoporate prior pathway knowledge to increase statistical
power and identify important risk variants.



Genomics Data: Wide Data, High Dimensional Data

Wide Data

Thousands / Millions of Variables

Hundreds of Samples

Screening and fdr,
Lasso, SVM, Stepwise

We have too many variables, prone to overfitting. Need to remove
variable, or regularize, or both

» Main constraint: situation with p > n

» Strong colinearity among the variables.



Group structures within the data

» Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.

— These genes can add up to have a larger effect

< can be detected as a group (i.e., at a pathway or gene
set/module level).



Group structures within the data
» Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.
— These genes can add up to have a larger effect

< can be detected as a group (i.e., at a pathway or gene
set/module level).

We consider variables are divided into groups:
» Example p: SNPs grouped into K genes
X =[SNP;, ...+ SNPy | SNPx,1, SNPy.2,...,SNPy |...| SNP4, ..., SNP,]

geney genez genek

> Example p: genes grouped into K pathways/modules (X; = gene;)

X=[X1, Xo, oo, Xic | Xiats Xicszs oo X |1 X, Xz, - -5 Xp)
————
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Our contribution for Multivariate phenotypes

< p >  —— >
G1 G2 GK
n Predictor matrix: Outcome matrix: | |n
- n observations - n observations
- p variables - q variables
- K groups

» Select group variables taking into account the data structures;
all the variables within a group are selected otherwise none of
them are selected

» Combine both sparsity of groups and within each group; only
relevant variables within a group are selected



Our contribution for Multivariate phenotypes
Frequentist Approaches: Partial Least Squares (PLS)
» Sparse Group PLS : SNP c Gene or Gene c Pathways

Liquet B., Lafaye de Micheaux P., Hejblum B. and Thiebaut R., (2016) Group
and Sparse Group Partial Least Square Approaches Applied in Genomics
Context. Bioinformatics, 32(1), 35—42.

» Sparse Group subgroup PLS : SNP c Gene c Pathways

M. Sutton, R. Thiebaut, and B. Liquet. (2018) Sparse group subgroup Partial
Least Squares with application to genomics data. Statistics in Medicine.
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M. Sutton, R. Thiebaut, and B. Liquet. (2018) Sparse group subgroup Partial
Least Squares with application to genomics data. Statistics in Medicine.

Main ideas:
» combining Ly and Lo penalties into the optimization function

» Sparse Group Penalties:

G
A1 )" \pgllBgllz + A2 11Bll
g=1



Our contribution for Multivariate phenotypes

Bayesian Approaches: Multivariate regression model

» Bayesian group lasso model with spike and slab priors

Liquet, B., Mengersen, K., Pettitt, A. N. and Sutton, M. (2016). *Bayesian
Variable Selection Regression Of Multivariate Responses For Group Data*
Bayesian Analysis. Volume 12, Number 4 (2017), 1039-1067.

Main ideas:

» spike and slab priors providing variable selection at the group
level.

» hierarchical spike and slab prior structure to select variables
both at the group level and within each group.



Extention for Pleiotropy: Model for multiple GWAS

\4

Suppose we have data from K independent GWAS datasets,
D =Dy1U---UDg, where D = ({y1, X1}, ..., {¥ne» Xn, )

v

yik € {0, 1} denotes the phenotype of the kth study

v

X € RP is the vector with corresponding p SNPs.

v

Logistic regression model

Logit(P(yi = 1|xi) = X; B fork =1,..., K,

v

B« € RP the regression coefficients for the kth GWAS.

v

LetB;. € RK, j=1,...,p, the vector of K regression coefficients
corresponding to the jth SNP over the K GWAS.



Group Structure

» SNPs can be partitioned into G groups (genes or Pathways)

» Letmg,g=1,..., G the set of SNPs contained in the gth group

» Matrix of all regression coefficients as

B=(B1.....8k) = B1.....8p)".



Frequentist Approach

» The log likelihood for the combined datasets:

K
p(D|B) = Z Lx where Lgx Log-Likelihood of study k
k=1

v

The penalised likelihood estimate

K
B- argmin{—z L+ A1lBlig, , + /12||B||£2,1} (1)
BeRPXK P

Gz.1-norm penalty [Bllg,, = 251 /Zier, L1 B2

(2.1-norm penalty [IBlle,, = X7, /SK_ B2 respectively.

v

v

v

The Go 1-norm fixes the group structure across studies and
encourages sparsity at a gene level.

v

The ¢, 1-norm which allows sparsity within a group.



Inference

» Inference using the alternating direction method of multipliers
algorithm (ADMM).

» Novel approach for identifying pleiotropic effects as it accounts
for gene specific and SNP specific effects using a variable
selection approach.

» The method is only capable of producing a point estimate of B
and acurrate estimation of the variance for these parameters is
not easily given.



Bayesian Logistic regression with multivariate spike and
slab prior: LogitMBGL-SS

» Lety = (y1,... ,yp)T indicate the association status for SNPs
where y; = 1 indicates that the jth SNP is associated to all K
traits.

> Spike and slab prior for the jth SNP B; € RX,

B;. ~ (1 = ¥)Nk(0,7V) +¥;00(B;.)
K+1 A
2 '2)

Tj2 ~ Gamma(

VvV~ IW(d,Q),
vj ~ Bernolli(ao)
ag ~ Beta(a, b)
forj=1,...,p, where 6o(B;) denotes a point mass at 0 € RX.

» Here, V € RK*K is a covariance matrix modeling the covariance
of the SNP effect on the traits.



Extension

» Should perform well when the SNPs are independent.

v

GWAS datasets: strong correlations that can occur between
SNPs within the same gene.

v

Solution: reparameterise the coefficeints to handle the sparsity
at a gene grouping level and individual feature level separately.

v

7 € RP to model individual sparsity

b(

> b9 ¢ RPoK with b9 = (b9, bd

] ) where b € RX for
group sparsity.

=109 wherer; >0, foralljen,.
j = Ti9; / J



Bayesian Logistic regression using multivariate sparse
group selection with spike and slab priors

Bi=1b?,  wherer;>0, foralljem
We assume the following multivariate spike and slab
b9 ~ (1 — ap) Np,k(0,Ip, ® V) + aodo(b'?)
T~ (1 —a)N? (0, 52) + a100(7;),
ag ~ Beta(ay, a»)

ay ~ Beta(cy, ¢2)
s? ~ InvGamma(1, t)

forjengandg=1,...,G



Signal recovery:

(i) amT: Grouped multi-task penalised logistic regression
(41 > 0,22 = 0) using G,1-norm

(i) smt: Sparse multi-task penalid penalised logistic regression
(41 = 0,122 > 0) using £2,1-norm

(iii) semT: Sparse group multi-task penalised logistic regression
(/11 > 0, /lg >0 )

(iv) roaitmeaL: Bayesian logistic regression using multivariate group
lasso with spike and slab prior

(v) LoaitmBsas: Bayesian logistic regression using multivariate
sparse group selection with spike and slab prior



Results:

value of coefficient
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Results: Bayesian
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Main Conclusion on the simulation studies

» The penalised approaches perform reasonably well in variable
selection but the reconstructed signal is underestimated.

» In general, the penalised likelihood methods suffer in terms of false
negatives, selecting more variables to be nonzero than the Bayesian
methods.

» The Bayesian methods perform the best in terms of signal recovery
measured by the ¢ error and variable selection performance metrics.

» The penalised likelihood approaches are computationally efficient
using alternating direction method of multipliers algorithm

» Simulation results suggest that when computationally possible the
Bayesian estimators should be used.

» The multivariate Bayesian sparse group selection with spike and slab
prior performed the best in terms of signal recovery.

» The Bayesian method provides a natural method for quantifying the
variability of the estimated coefficients.



What Next ?

» Application on real data: case/control studies
» Breast Cancer and Thyroide Cancer
» Thyroide Cancer (482 case, 463 control)
» Breast Cancer (1172 case, 1125 control)

» 6677 SNPs from 618 genes from 10 non-overlapping gene
pathways.
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