

Estimation de taille d'étude dans le contexte d'analyse du microbiome

Roxane Couëron a, Hélène Savel a, Boris Hejblum b

CONTEXTE

- **Objectif**: Proposer une méthode d'estimation de taille d'étude pour comparer la composition du microbiote entre deux conditions (ex : avant/après traitement)
- Méthodes classiques d'estimation de taille d'étude non applicables car :
 - Données de microbiote = données compositionnelles de grandes dimensions
 - Analyse statistique : analyse d'abondance différentielle identifier les micro-organismes dont l'abondance est différente entre deux conditions
- Application étude MICAMU :
 - Objectif: étudier l'impact de l'antibiothérapie intraveineuse (ATB IV) sur le microbiote intestinal chez les enfants atteints de mucoviscidose
 - Schéma : étude observationnelle, monocentrique, prospective
 - Critère de jugement principal : évolution du profil de microbiote fécal mesuré avant et après traitement

• **Microbiote** : ensemble des micro-organismes vivant dans un environnement spécifique (**microbiome**) chez un hôte

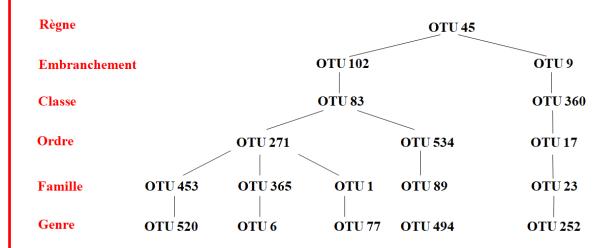
 Séquençage ciblé d'un gène marqueur microbien spécifique

Bactéries : gène 16S

Champignons : gène ITS

• OTU (Unité Taxonomique Opérationelle) : ensemble de micro-organismes présentant un niveau de similarité de séquence d'ADN

http://riteshbawri.com/microbiome/


Table d'abondances brutes de l'étude pilote MICAMU (table d'OTUs)

Sujets OTUs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
OTU 1	0	0	0	0	2	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
OTU 2	0	0	0	0	0	0	6	0	0	0	0	0	0	0	4	0	0	0	0	0
OTU 3	11	0	2	7	5	35	72	69	0	121	70	168	52	2	62	23	2	4	14	0
OTU 4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
OTU 5	447	232	117	49	22	480	43	177	4	98	305	333	176	9	163	98	0	7	2	0
OTU 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
OTU 7	0	0	0	0	0	0	0	0	0	0	0	0	364	98	0	0	0	0	0	0
OTU 576	12	7	0	0	0	0	0	9	0	0	0	1	0	0	0	0	0	0	0	0

Des données spécifiques :

Données compositionnelles

Arbre phylogénétique de la lignée taxonomique

Corrélations entre les différentes OTUs

Des données spécifiques :

- Données compositionnelles
- Grande dimension

Table d'abondance brutes de l'étude pilote MICAMU (table d'OTUs)

Sujets OTUs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
OTU 1	0	0	0	0	2	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
OTU 2	0	0	0	0	0	0	6	0	0	0	0	0	0	0	4	0	0	0	0	0
OTU 3	11	0	2	7	5	35	72	69	0	121	70	168	52	2	62	23	2	4	14	0
OTU 4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
OTU 5	447	232	117	49	22	480	43	177	4	98	305	333	176	9	163	98	0	7	2	0
OTU 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
OTU 7	0	0	0	0	0	0	0	0	0	0	0	0	364	98	0	0	0	0	0	0
OTU 576	12	7	0	0	0	0	0	9	0	0	0	1	0	0	0	0	0	0	0	0

Des données spécifiques :

- Données compositionnelles
- Grande dimension
- Inflation de zéros
 - OTU absente
 - OTU présente < seuil

Table d'abondance brutes de l'étude pilote MICAMU (table d'OTUs)

Sujets OTUs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
OTU 1	0	0	0	0	2	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
OTU 2	0	0	0	0	0	0	6	0	0	0	0	0	0	0	4	0	0	0	0	0
OTU 3	11	0	2	7	5	35	72	69	0	121	70	168	52	2	62	23	2	4	14	0
OTU 4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
OTU 5	447	232	117	49	22	480	43	177	4	98	305	333	176	9	163	98	0	7	2	0
OTU 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
OTU 7	0	0	0	0	0	0	0	0	0	0	0	0	364	98	0	0	0	0	0	0
OTU 576	12	7	0	0	0	0	0	9	0	0	0	1	0	0	0	0	0	0	0	0

Des données spécifiques :

- Données compositionnelles
- Grande dimension
- Inflation de zéros
 - OTU absente
 - > OTU présente < seuil
- Normalisation

	Patient A
OTU 1	0
OTU 2	0
OTU 3	11
OTU 4	0
OTU 5	447
OTU 6	0
OTU 7	0
OTU q	82

Total	1788)

	Patient B
OTU 1	0
OTU 2	0
OTU 3	3
OTU 4	0
OTU 5	447
OTU 6	0
OTU 7	0
OTU q	36
· · · · · · · · · · · · · · · · · · ·	·

Total 4470

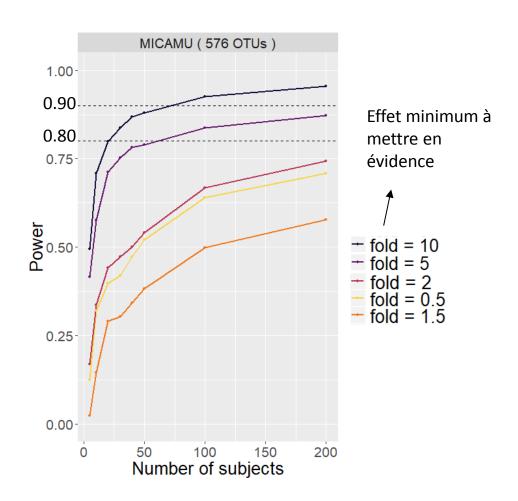

16/05/2019 USMR - CHU de Bordeaux

MÉTHODE

La puissance de détection de l'abondance différentielle est estimée à partir de :

- une étude pilote (difficulté à simuler des données compositionnelles de grande dimension)
- 3 paramètres fixés :
 - Une taille d'étude « n »
 - Une proportion d'OTUs différentiellement exprimées entre les deux conditions > appelé « q* »
 - ➤ Un effet minimum à mettre en évidence (multiplicatif) → appelé « Fold »
- Une méthode d'analyse adaptée aux données de microbiote (littérature)

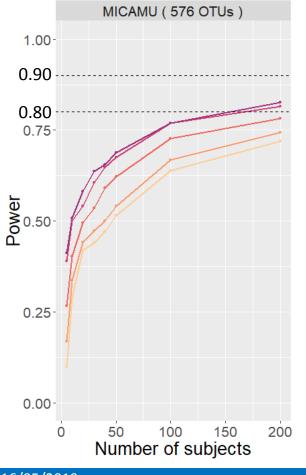
16/05/2019 USMR - CHU de Bordeaux

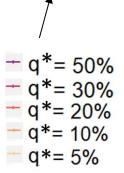

ALDEX 2

Fernandes A. D. et al. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2014; 2: 15

- Données compositionnelles
 - Transformation clr.
- Normalisation
 - Loi de Dirichlet
- Inflation de zéros
 - Suppression des OTUs ayant des comptes à zéro dans tous les échantillons
 - Prior non informatif de ½ (statistique bayésiennes)
- Prise en compte de la multiplicité des tests
 - Correction de Benjamini-Hochberg (FDR)
- données appariées / indépendantes

RÉSULTATS


<u>Evolution de la puissance de détection de l'abondance différentielle en fonction du nombre de sujets pour différentes valeurs de taille d'effet « fold »</u>


- ALDEx2
- 100 simulations
- $q^* = 10\% \times 576 \ OTUs = 58 \ OTUs$

RÉSULTATS

<u>Evolution de la puissance de détection de l'abondance différentielle en fonction du nombre de sujets pour différentes proportions « q* » d'OTUs exprimées différentiellement entre les deux conditions</u>

Proportion d'OTUs générées avec une abondance différente entre les deux conditions (parmi les 576 OTUs)

- ALDEx2
- 100 simulations
- fold = 2

Plus « *q* * » est grand plus la puissance de détection est élevée

→ Certains OTUs peuvent aider à détecter les autres (corrélations entre OTUs)

CONCLUSION

- Résultats conformes aux attentes
- Package R documenté, disponible sur demande → Prévision de le rendre accessible sur le CRAN
- Limites:
 - Disposer de données pilotes spécifiques à la question de recherche
 - Fiabilité des hypotheses concernant :
 - La taille d'effet
 - Le pourcentage d'OTUs qui vont modifier leur abondance entre les deux conditions
- Perspectives :
 - Créer une banque de données pilote (données disponibles publiquement)
 - Étudier la sensibilité aux données utilisées pour les simulations
 - Développer une application shiny (Interface web interactive qui fait tourner du code R)

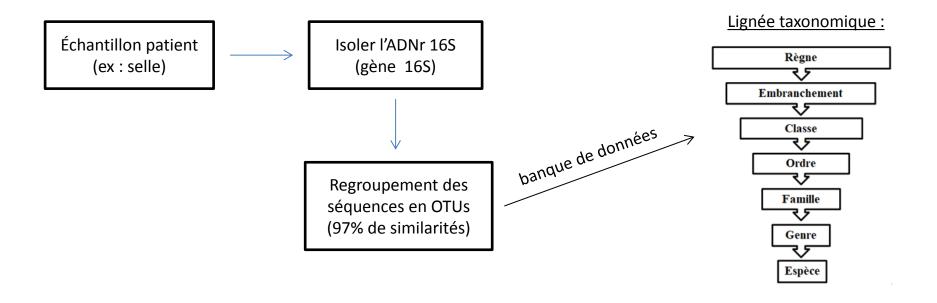
16/05/2019 USMR - CHU de Bordeaux

MERCI DE VOTRE ATTENTION

SUPPLÉMENTS

SUPPLEMENTAIRE 1 CONTEXTE

Données de séquençage


Vue d'ensemble et caractéristiques des données de deux jeux de données réels

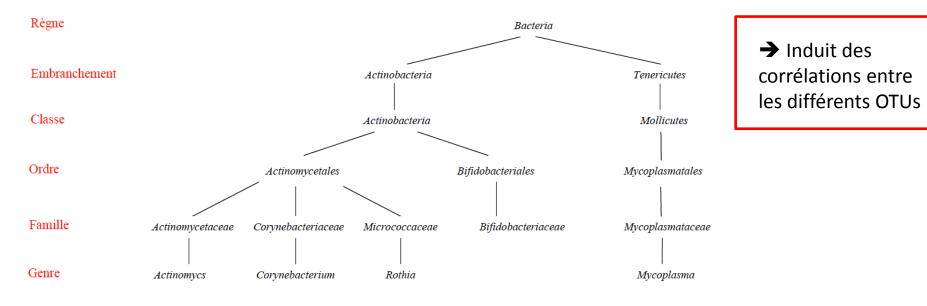
Etudes	MucoFong	MICAMU					
Niche écologique	Expectorations (crachats ou sécrétions)	selles					
Population étudiée	Enfants et adultes atteints de mucoviscidose	Enfants de plus de 3 ans atteints de mucoviscidose					
Nombre total des lectures	240828	55462160					
Nombre d'échantillons	31	20					
Nombre d'OTUs	71	576					
Nombre total de lectures	7330 [6743 - 8596]	2145706 [1525087 - 2987627]					
par échantillon médian [Q1 – Q3]							
Sparsité (pourcentage de zéros)	69.0%	60.2%					

SUPPLEMENTAIRE 1 CONTEXTE : données de microbiote

• Séquençage d'un gène marqueur microbien spécifique (séquençage ciblé)

Données de séquençage

SUPPLEMENTAIRE 3 CONTEXTE : données de microbiote


Particularités structurelles des données

- Données de grandes dimensions
- Les micro-organismes du microbiome sont organisés au sein d'un arbre phylogénique
- Données de compositions
 - Les méthodes statistiques standards ne sont pas directement applicables
 - La modélisation des comptes à l'aide de famille de modèles de probabilité peut ne pas convenir
 - Prendre des sous-compositions de données de compositions résulte souvent en une interprétation de la structure de corrélation complètement différente
- Grande proportion de zéros dans les données d'abondances

SUPPLEMENTAIRE 4 CONTEXTE : données de microbiote

Particularités structurelles des données

• Les micro-organismes du microbiome sont organisés au sein d'un arbre phylogénique

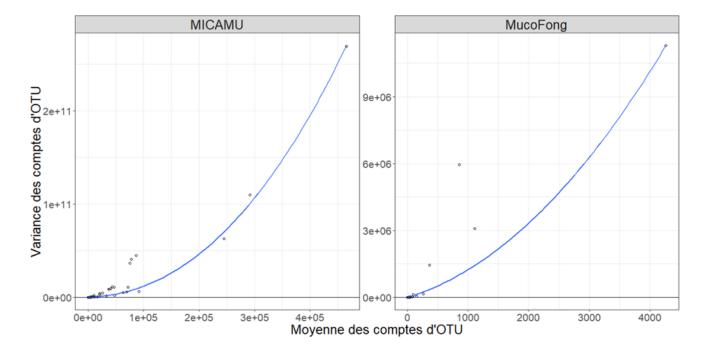
SUPPLEMENTAIRE 5 CONTEXTE : données de microbiote

Particularités structurelles des données

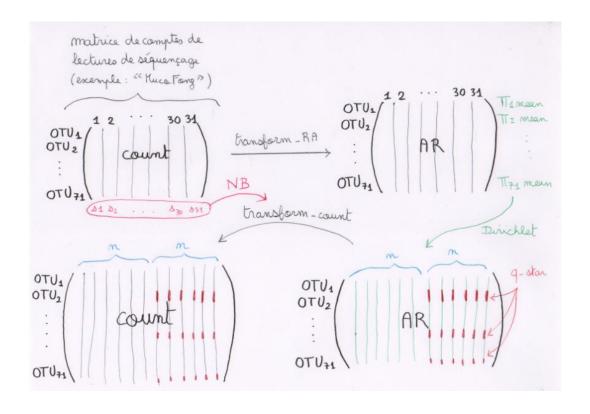
Données de composition

Simplex d' Aitchison

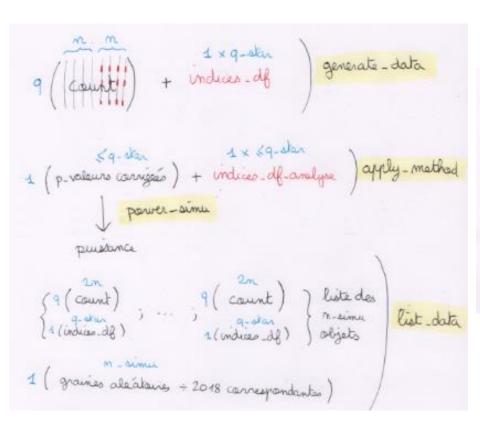
$$S^q = \big\{\, x = \big(\pi_1, \dots, \pi_q\big) \in R^q \ \big| \ \pi_i > 0, \sum_{i=1}^q \pi_i = 1\, \big\}$$

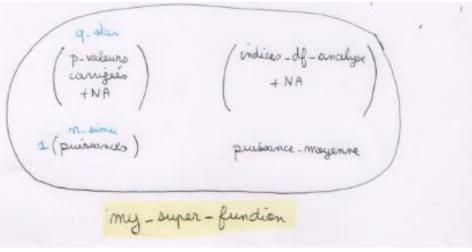

- Les données ne sont pas indépendantes de l'unité
 - → Les méthodes statistiques standards ne sont pas directement applicables
- Les données du microbiome affichent à la fois des corrélations positives et négatives
- → La modélisation des comptes à l'aide de famille de modèles de probabilité peut ne pas convenir

 > Distribution Dirichlet-multinomiale
- Prendre des sous-compositions de données de compositions résulte souvent en une interprétation de la structure de corrélation complètement différente


SUPPLEMENTAIRE 6 CONTEXTE : données de microbiote

Particularités structurelles des données


Relation de variance moyenne montrant une sur-dispersion, c'est-àdire une variance plus élevée que la valeur moyenne d'une OTU donnée.



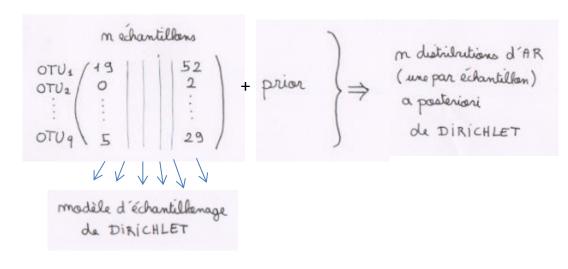
SUPPLEMENTAIRE 11 MÉTHODE

SUPPLEMENTAIRE 12 MÉTHODE

<u>Tests d'hypothèses multiples utilisant l'approche du taux de fausse découverte (FDR) de Benjamini et Hochberg.</u>

La technique de Benjamini et Hochberg (1995) contrôle le FDR:

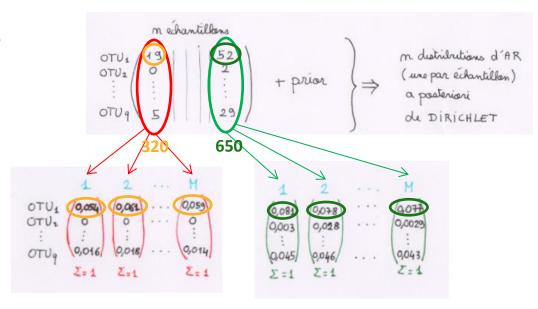
	H_0 Vraies	H_0 Fausses	Total
H_0 non rejetée	U	T	W
H_0 rejetée	V	S	R
Total	m_0	$m-m_0$	m


Le taux de fausse découverte (**FDR**) : correspond à l'espérance de la proportion d'erreur de type I « $\alpha_{seuil} = P_{H_0}(rejet\ H_0)$ » prévue parmi l'ensemble des hypothèses rejetées :

$$FDR = E(\frac{V}{R} \mid R > 0)$$

- Données de grandes dimensions
- Les micro-organismes du microbiome sont organisés au sein d'un arbre phylogénique
- Données de compositions
 - Les méthodes statistiques standards ne sont pas directement applicables
 - La modélisation des comptes à l'aide de famille de modèles de probabilité peut ne pas convenir
 - Prendre des sous-compositions de données de compositions résulte souvent en une interprétation de la structure de corrélation complètement différente
- Grande proportion de zéros dans les données d'abondances
- Les distributions de comptes ont une dépendance non triviale entre leur moyenne et leur variance (les variances des distributions de comptage sont plus grandes que leurs moyennes : sur-dispersion)
- Prend en compte l'échantillonnage aléatoire
- Calculs lents

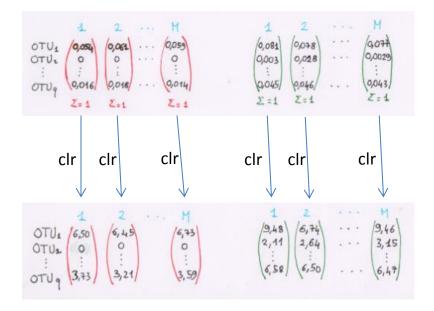
<u>Etape 1</u>: Convertir la matrice de comptage en **n distributions d'abondance** relative a posteriori (une par échantillon)


- Dirichlet : données compositionnelles
- Inflation de zéros
 - suppression des OTUs présentant des comptes à zéro dans tous les échantillons
 - ightharpoonup Prior non informatif de $\frac{1}{2}$

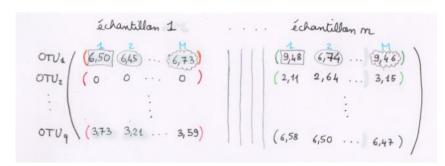
Etape 2 : Pour chacun des n échantillon, on génère M échantillons de Dirichlet Monte-Carlo avec la distribution a posteriori associée

Monte-Carlo

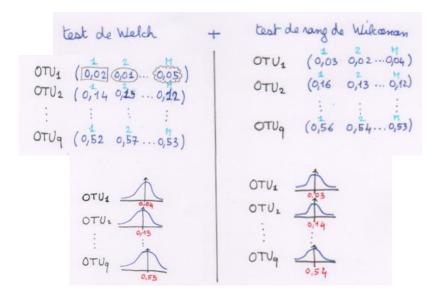
→ Prise en compte de la variabilité des mesures


Etape 3 : Chaque vecteur *de DMC* est normalisé avec la **transformation** centrée sur le log-ratio (*clr*)

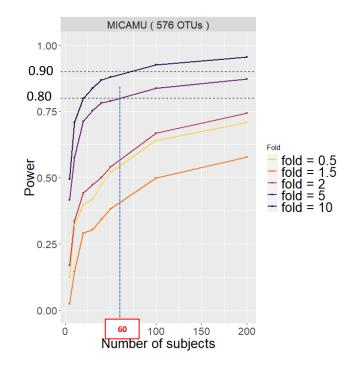
Déf: Soit
$$x = (x_1, x_2, ..., x_q)$$


$$clr(x) = (\log_2\left(\frac{x_1}{g(x)}\right), \log_2\left(\frac{x_2}{g(x)}\right), ..., \log_2\left(\frac{x_q}{g(x)}\right))$$

$$g(x) = \prod_{i=1}^q x_i^{1/q}$$


→ Cohérence sous-compositionnelle

<u>Etape 4 :</u> Pour chaque OTU on teste la **différence de** *clr* **entre les deux conditions** pour chaque instance de Dirichlet Monte-Carlo + **correction pour les tests multiples** (Benjamini-Hochberg)


=> On obtient la distribution a posteriori des p-valeurs corrigées pour chaque OTU (tenant compte de la variabilité des mesures)

SUPPLEMENTAIRE 10 RÉSULTATS

Supposons que le clinicien prévoit une sur-expression de 10% des OTUs après l'initiation d'un traitement. Il souhaite pouvoir mettre en évidence une multiplication des abondances relatives par 5 de ces OTUs (fold = 5) avec une puissance statistique de 80%.

→ Lorsqu'on considère que 576 OTUs sont détectés par séquençage il faut inclure environ 60 patients pour pouvoir répondre à la question du clinicien.

SUPPLEMENTAIRE 11 RÉSULTATS

Number of subjects

- ALDEx2
- 100 simulations

Evolution de la puissance de détection de l'abondance différentielle en fonction du nombre de sujets pour

différentes valeurs des paramètres MICAMU (576 OTUs) 1.00-MICAMU (576 OTUs) Proportion d'OTUs 1.00 générées avec une abondance différente 0.90 0.75entre les deux Effet minimum à 0.80 conditions (parmi les mettre en 0.75 576 QTUs) évidence Power 0.50--q*=50%- q*= 30% - q*= 20% fold = 2 fold = 0.5 fold = 1.5 q*= 10% 0.25 - q* = 5%0.25 0.00-0.00 100 50 150 200 0 50 100 150 0 200 Number of subjects

SUPPLEMENTAIRE 12 MÉTHODE : ANCOM

- Données de grandes dimensions
- Les micro-organismes du microbiome sont organisés au sein d'un arbre phylogénique
- Données de compositions
 - Les méthodes statistiques standards ne sont pas directement applicables
 - La modélisation des comptes à l'aide de famille de modèles de probabilité peut ne pas convenir
 - Prendre des sous-compositions de données de compositions résulte souvent en une interprétation de la structure de corrélation complètement différente
- Grande proportion de zéros dans les données d'abondances
- Les distributions de comptes ont une dépendance non triviale entre leur moyenne et leur variance (les variances des distributions de comptage sont plus grandes que leurs moyennes : sur-dispersion)
- Analyse longitudinale de la composition microbienne
- Calculs très lents