

Méta-analyse et marqueurs biologiques : application chez les patientes atteintes de cancer du sein

Stefan Michiels, PhD

Responsable équipe Oncostat, CESP, INSERM U1018, Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Paris-Sud University, Villejuif, France stefan.michiels@gustaveroussy.fr

Trois exemples pronostiques

- Les lymphocytes infiltrant les tumeurs chez les patientes atteintes d'un cancer du sein triple négatif de stade précoce
- Les cellules circulantes tumorales dans de cancer du sein métastatique
- Des signatures génomiques dans le cancer du sein de stade précoce

1) Stromal TILs: evaluate %TILs in the tumor stroma

review

Annals of Oncology 00: 1–13, 2014 doi:10.1093/annonc/mdu450

The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014

- Ring studies to obtain reproducible measurements between pathologists !
- Protocol for pooled
 analysis

Salgado, Denkert et al, 2014

IPD: individual patient data; pts: patients, TILs: tumour infiltrating lymphocytes; sTIL: stromal TILs (primary biomarker); iTILs: intrautmoral TILs; CP: clinicopathological factors age, nodal status, tumour size, tumour grade, treatment (anthracycline or anthracycline plus taxanes)

Objectif primaire : évaluer la valeur pronostique de la présence de TILs dans le stroma tumoral dans les cancers du sein triple négatifs (TNBC)

Obtaining high level of clincial validity for a biomarker: Tumour Infiltrating lymphocytes in triple negative breast cancer

OS

Loi et al JCO 2019

Obtaining high level of evidence for a biomarker: TILs example

-1 Strata < Strata < Strata	0 positive node and Stromal TILs >= 30% -3 positive nodes and Stromal TILs < 30% -3 positive nodes and Stromal TILs >= 30% -3 positive nodes and Stromal TILs < 30% -3 positive nodes and Stromal TILs >= 30%	213 630 294 365 166	211 618 289 334 163	205 564 280 279 141	195 517 260 239 122	184 482 250 216 111	162 427 226 174 103	141 386 198 155 92	121 339 168 130 79	90 264 137 82 58	71 191 98 56 41	54 136 64 37 26	
		5		-	5		5	5		5	5	10	

Time since randomization (in years)

Survival probability

Loi et al JCO 2019

Added prognostic value

Likelihood ratio test for stromal tils and intratumoral TILs with or without adjustment on clinical factors (CP: age, tumor size, number of positive nodes, histological grade and treatment)

n=1826	IDFS (608	events)	DDFS (482	events)	OS (438 eve	ents)
	χ^2	р	χ^2	р	χ^2	р
Stromal TILs vs NULL	70.69	< 10 ⁻⁶	89.13	< 10 ⁻⁶	70.38	< 10 ⁻⁶
CP vs NULL	138.78	$< 10^{-6}$	179.58	< 10 ⁻⁶	157.65	< 10 ⁻⁶
Stromal TILs+CP vs NULL	187.69	< 10 ⁻⁶	235.36	< 10 ⁻⁶	206.12	< 10 ⁻⁶
Stromal TILs+CP vs Stromal TILs	117.00	< 10 ⁻⁶	146.23	< 10 ⁻⁶	135.74	< 10 ⁻⁶
Stromal TILs+CP vs CP	48.91	< 10 ⁻⁶	55.78	< 10 ⁻⁶	48.47	< 10 ⁻⁶

Loi et al JCO 2019

5-year AUC in leave-one study out crossvalidation

(CP: age, tumor size, number of positive nodes, histological grade and treatment) using leave one study out cross-validation

Score components	IDFS (414 events)	DDFS (333 events)	OS (300 events)
Stromal TILs	0.597 [0.541; 0.659]	0.604 [0.525; 0.672]	0.586 [0.556; 0.671]
Intratumoral TILs	0.597 [0.524; 0.659]	0.601 [0.540; 0.668]	0.580 [0.534; 0.627]
Stromal TILs+Intratumoral TILs	0.607 [0.560; 0.657]	0.614 [0.557; 0.667]	0.593 [0.567; 0.664]
СР	0.649 [0.547; 0.713]	0.672 [0.549; 0.759]	0.681 [0.563; 0.808]
Stromal TILs+CP	0.681 [0.559; 0.756]	0.701 [0.573; 0.793]	0.694 [0.601; 0.769]
Intratumoral TILs+CP	0.673 [0.571; 0.714]	0.692 [0.577; 0.780]	0.689 [0.580; 0.781]
Stromal TILs+Intratumoral TILs+CP	0.684 [0.566; 0.752]	0.700 [0.573; 0.794]	0.693 [0.603; 0.766]

Calibration in leave-one-study out crossvalidation

Obtaining high level of evidence for a biomarker: TILs example

https://www.tilsinbreastcancer.org/prognosis-tool/

					J						
0	1	2	3	4	5	6	7	8	9	10	
Age (yea	rs):									
20				50)					85	
				=€)						
20	27	34	41	48	55	62		69	76	8385	
Num	ber	of po	sitiv	e noc	les:						
0										20	
\bigcirc											
0	2	4	6	8	10	12	14	16	18	20	
Tumo	or si	ze (c	m):								
]0;	2]									•	
Histo	logi	ical g	rade								
Gra	de 1	L or 2								•	
Treat	mei	nt:									
	hra									-	

2) Cellules tumorales circulantes

Goals:

- Analysis in homogeneous fashion (both endpoints and biomarker data)
- Resolve conflicting results between studies (heterogeneity)
- Increase statistical power (published and unpublished)
- Adjust for clinicopathological factors
- Added value to established clinicopathological factors
- Subgroups

Bidard et al Lancet Oncol 2014

Studies included

CTC at baseline

≥5 CTC / 7.5mL were detected in 47% of the 1,944 patients at baseline											
1st quartile	Median	3rd quartile	Maximum								
0 CTC	3 CTC	25 CTC	58160 CTC								
CTC count at baseline was associated with											
	First line (N=										
Performance status	p<0.0001	p<0.0001									
Liver metastases	p<0.0001	p<0.0001									
Bone metastases	p<0.0001	p<0.0001									
Elevated CEA	p<0.0001	p<0.0001	≥5 CTC								
Elevated CA15-3	p<0.0001	p<0.0001	HR+ 51%								
Tumor subtype	p=0.71	p<0.0001◀	HER2+ 38%								
			T. Neg 44%								

Bidard et al Lancet Oncol 2014

Early CTC changes during treatment

Baseline & week 3-5 (landmark)

Added value to ClinicoPathological model

Jacknife Resampling procedure

	Model 1 average c-index	Model 2	Model 2 average c-index	Average c-index increase model 2-model 1 (95% CI)	Average increase χ² (95% CI)	Likelihood ratio test p value						
Progression-free surviva	al (N=1196 pat	cients)										
Model 1: CP	0.668	$CP+CTC_{BL}$ (< or ≥ 5 CTC)	0.684	0.016 (0 to 0.029)	38·4 (21·9 to 60·3)	<0.0001						
Model 1: CP	0.668	$CP+CTC_{BL}$ (splines)	0.673	0.005 (-0.001 to 0.010)	18·7 (9·1 to 35·4)	<0.0001						
Overall survival (N=1501 patients)												
Model 1: CP	0.714	$CP+CTC_{BL}$ (< or ≥ 5 CTC)	0.745	0.031 (0.013 to 0.047)	64·9 (41·3 to 93·4)	<0.0001						
Model 1: CP	0.714	$CP+CTC_{BL}$ (splines)	0.721	0.007 (0.001 to 0.014)	21·2 (10·2 to 37·3)	<0.0001						
Progression-free surviva	Progression-free survival, CTC count at weeks 3–5 (N=436 patients)											
Model 1: CP+CTC _{BL}	0.652	$CP + CTC_{BL} + CTC_{3-5} (< or \ge 5 CTC)$	0.659	0.008 (-0.009 to 0.021)	8·2 (0·78 to 20·4)	0.004						
Model 1: CP+CTC _{BL}	0.652	$CP+CTC_{BL}+CTC_{3-5}$ (splines)	0.655	0.004 (-0.009 to 0.017)	7·4 (2·3 to 16·7)	0.02						
Overall survival, CTC count at weeks 3–5 (N=568 patients)												
Model 1: CP+CTC _{BL}	0.720	$CP+CTC_{BL}+CTC_{3-5}($	0.732	0.011 (-0.008 to 0.027)	11·5 (2·6 to 25·1)	0.0007						
Model 1: CP+CTC _{BL}	0.721	$CP+CTC_{BL}+CTC_{3-5}$ (splines)	0.725	0.004 (-0.01 to 0.018)	8·2 (3·4 to 23·7)	0.02						
Progression-free surviva	al, CTC count a	t weeks 6–8 (N=279 patients)										
Model 1: CP+CTC _{BL}	0.602	$CP + CTC_{_{BL}} + CTC_{_{6-8}} (< or \ge 5 CTC)$	0.628	0·026 (0 to 0·053)	15·3 (5·2 to 28·3)	<0.0001						
Model 1: CP+CTC _{BL}	0.601	$CP+CTC_{BL}+CTC_{6-8}$ (splines)	0.613	0.012 (-0.01 to 0.036)	10·2 (3·7 to 18·6)	0.006						
Overall survival, CTC cou	unt at weeks 6	-8 (N=380 patients)										
Model 1: CP+CTC _{BL}	0.671	$CP + CTC_{BL} + CTC_{6-8} (< or \ge 5 CTC)$	0.686	0.016 (-0.015 to 0.041)	14·6 (4·0 to 30·6)	0.0001						
Model 1: CP+CTC _{BL}	0.670	$CP+CTC_{BL}+CTC_{6-8}$ (splines)	0.680	0.010 (-0.028 to 0.051)	10·6 (3·4 to 22·1)	0.005						
Progression-free Surviv	al, CTC count a	vailable both at weeks 3–5 and 6–8	(N=184 pat	ients)								
Model 1: CP+CTC _{BL}	0.560	$CP+CTC_{BL}+CTC_{3-5}($	0.579	0.019 (-0.018 to 0.055)	5·5 (0·66 to 12·7)	0.02						
Model 1: CP+CTC _{BL}	0.562	$CP + CTC_{BL} + CTC_{6-8} (< or \ge 5 CTC)$	0.590	0.029 (-0.019 to 0.065)	9·2 (2·1 to 18·1)	0.002						
Overall survival, CTC cou	unt available b	oth at weeks 3–5 and 6–8 (N=216 p	atients)									
Model 1: CP+CTC _{BL}	0.617	$CP + CTC_{BL} + CTC_{3-5} (< or \ge 5 CTC)$	0.634	0.017 (-0.027 to 0.057)	7·2 (0·0 to 30·6)	0.007						
Model 1: CP+CTC _{BL}	0.613	$CP + CTC_{_{BL}} + CTC_{_{6-8}} (< or \ge 5 CTC)$	0.633	0.021 (-0.046 to 0.067)	10·1 (2·2 to 20·9)	0.001						

CTC=circulating tumour cells. CP=baseline clinicopathological model (appendix pp 3–5). CTC_{a1}=CTC count at baseline. CTC_{a2}=CTC count at 3–5 weeks. CTC_{a2}=CTC count at 6-8 weeks.

Table 2: Assessment of added prognostic information of CTC at baseline and during treatment, by model 1

3) Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis (JCO 2012)

Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial

Luca Gianni, Tadeusz Pienkowski, Young-Hyuck Im, Laslo Roman, Ling-Ming Tseng, Mei-Ching Liu, Ana Lluch, Elżbieta Staroslawska, Juan de la Haba-Rodriguez, Seock-Ah Im, Jose Luiz Pedrini, Brigitte Poirier, Paolo Morandi, Vladimir Semiglazov, Vichien Srimuninnimit, Giulia Bianchi, Tania Szado, Jayantha Ratnayake, Graham Ross, Pinuccia Valagussa

Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial

José Baselga, Ian Bradbury, Holger Eidtmann, Serena Di Cosimo, Evandro de A Veerle Van Dooren, Gursel Aktan, Aron Goldhirsch, Tsai-Wang Chang, Zsolt H-Georg Kunz, Joo Hyuk Sohn, Vladimir Semiglazov, Guillermo Lerzo, Marketa P Richard D Gelber, Martine Piccart-Gebhart, on behalf of the NeoALTTO Study

The NEW ENGLAND JOURNAL of MEDICINE

(M) *

ESTABLISHED IN 1812

JANUARY 26, 2012

VOL. 366 NO. 4

Neoadjuvant Chemotherapy and Bevacizumab for HER2-Negative Breast Cancer

Gunter von Minckwitz, M.D., Holger Eidtmann, M.D., Mahdi Rezai, M.D., Peter A. Fasching, M.D., Hans Tesch, M.D., Holm Eggemann, M.D., Iris Schrader, M.D., Kornelia Kittel, M.D., Claus Hanusch, M.D., Rolf Kreienberg, M.D., Christine Solbach, M.D., Bernd Gerber, M.D., Christian Jackisch, M.D., Georg Kunz, M.D., Jens-Uwe Blohmer, M.D., Jens Huober, M.D., Maik Hauschild, M.D., Tanja Fehm, M.D., Berit Maria Müller, M.D., Carsten Denkert, M.D., Sibylle Loibl, M.D., Valentina Nekljudova, Ph.D., and Michael Untch, M.D., for the German Breast Group and the Arbeitsgemeinschaft Gynäkologische Onkologie–Breast Study Groups **Prognostic Signatures**

Chromosomal Instability

Microenvironment

Oncogenic Pathways

GGI Gene70 CIN70 Stroma1 Stroma2 Immune1 Immune2 RAS MAPK PTEN AKTmTOR PIK3CA IGF1 SRC MYC E2F3 BetaCatenin

Gene Modules

$$\frac{\sum_{i \in n} W_i X_i}{\sum_{i \in n} W_i}$$

2.5% and 97.5% quantiles of Gene Modules scaled to [-1,1] within a study

Key Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets

Adaikalavan Ramasamy^{*}, Adrian Mondry, Chris C. Holmes, Douglas G. Altman

icroarray technology measures the mRNA levels of tens of thousands of genes in tissue samples simultaneously in a high-throughput and costeffective manner. Since its introduction over a decade ago [1], it has found widespread use in the fields of molecular genetics and functional genomics. It has been applied in order to understand underlying biological mechanisms [2], to discover novel subgroups of diseases [3–5], to examine drug response [6,7], to classify patients into disease groups [3], and to predict disease outcomes [8–10]. Some molecular signatures discovered with microarray technology are now being evaluated in prospective randomized clinical trials [11,12].

Despite their great prom report findings that are no to the mildest of data pertuinclude improper analysis of false positives, and inadequ The situation is exacerbate to large numbers of potent thousands of probes are in of biological samples.

Generalizability across st assessed before considering For example, the findings from a particular geograph

Summary Points

- Improvements in microarray technology and its increasing use have led to the generation of many highly complex datasets that often try to address similar biological questions.
- Meta-analysis, a statistical approach that combines results from independent but related studies, is a relatively inexpensive option that has the potential to increase both the statistical power and generalizability of single-study analysis.
- Meta-analysis of microarray datasets, and genomic data in general, is desirable, and is much enhanced when raw data are available.

OPEN ORCESS Freely available online

Guidelines and Guidance

Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration

Douglas G. Altman¹*, Lisa M. McShane², Willi Sauerbrei³, Sheila E. Taube⁴

1 Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom, 2 US National Cancer Institute, Bethesda, Maryland, United States of America, 3 Institut fuer Medizinische Biometrie und Medizinische Informatik, Universitaetsklinikum Freiburg, Freiburg, Germany, 4ST-Consulting, Bethesda, Maryland, United States of America

PLOS MEDICINE

Flow Chart

Included studies (all Affymetrix)

	All Trials	EORTC	10994	I-SPY-1	LBJ/INEN/ GEICAM	MDAC	C Trial	TOP	MAQCII/	MAQCIII	USO-02103
Characteristic	(N = 996)	A (n = 102)	AT (n = 58)	AT $(n = 79)$	AT $(n = 57)$	A (n = 87)	AT (n = 91)	A (n = 114)	AT $(n = 265)$	A (n = 82)	AT $(n = 61)$
Age, years											
≤ 50	528	38	30	51	30	52	48	69	127	48	35
> 50	432	28	28	28	27	35	43	45	138	34	26
Unknown	36	36	0	0	0	0	0	0	0	0	
сТ											
T0-1	65	2	1	1	1	5	8	16	26	3	2
T2	514	63	33	32	19	37	39	79	149	44	19
Т3	255	34	20	38	18	18	19	5	42	21	40
T4	154	0	0	8	19	26	25	14	48	14	0
Unknown	8	3	4	0	0	1	0	0	0	0	0
cN											
NO	336	37	21	25	16	28	31	52	73	33	20
N1	465	55	28	46	25	33	38	57	119	32	32
N2	127	7	5	6	15	22	16	3	38	10	5
N3	55	0	0	2	1	3	6	2	35	2	4
Unknown	13	3	4	0	0	1	0	0	0	5	
ER status*				I I I Z Z		TOF	176				
Negative	562	65	58	36	21	38	42	114	117	41	30
Positive	434	37	0	43	36	49	49	0	148	41	31
HER2 status†											
Negative	852	74	40	76	57	77	75	81	231	82	59
Positive	144	28	18	3	0	10	16	33	34	0	2
Histologic grade											
1	47	2	0	6	5	5	10	2	13	3	1
2	308	22	16	24	19	31	30	20	102	25	19
3	503	32	37	27	23	36	36	87	150	37	38
Unknown	138	46	5	22	10	15	15	5	0	17	3
pCR											
Yes	233	39	26	14	11	7	19	16	57	24	20
No	763	63	32	65	46	80	72	98	208	58	41
No. of relapses	117	0		16	17	0		23	48		13
No. of patients				-							
with follow-up	519	0		79	57	0		102	227		41
GEO		GSE6861		GSE25066	GSE25066	GSE20271		GSE16446	GSE20194	GSE22093	GSE23988
									GSE25066		GSE25066
References		Bonnefoi et al	38	Hatzis et al ⁴¹	Hatzis et al ⁴¹	Tabchy et al ³	39	Desmedt et al ³⁷	Shi et al ⁴⁰	Hatzis et al ⁴¹	Hatzis et al ⁴¹
									Hatzis et al ⁴¹		lwamoto et al'

Power calculation?

- Scaled gene modules follow a normal distribution N(0,s=0.5).
- A 1-unit increase in scaled module scores would correspond to 2s.
- Overall pCR: 24%, ER-/HER2-: 25%, HER2: 36%, ER+/HER2-: 10%.

- Power for detecting an odds ratio of 2 in pCR for a 1-unit increase in a module score at the α =0.05 with a 2-sided test, would be approximately above 99% for all pts and in the subtypes ER-/HER2-: 89% power, ER+/HER2- 54% and HER2+: 50%. - odds ratio of 3: power above 99% for all pts and inER-/HER2-: 99%, ER+/HER2-: 91% and HER2+: 88%.

- Assume the clinicopathological model and data set effect would explain 18% of the variation in pCR. For detecting an adjusted odds ratio of 2, the power would be approximately 97% for all patients, 76% for ER-/HER2-, 40% for ER+/HER2- and 37% for HER2+.

Hsieh et al Stat Med 1998

Gene Modules Correlation

Clinicopathological model

				95% CI	95% CI	
	Patients	pCR	OR	(low)	(high)	Р
Age						
≤ 50	457	104	1			
> 50	388	85	0.89	0.62	1.28	5.2E-01
сТ						
T0-1 & T2	514	124	1			
T3 &T4	331	65	0.59	0.40	0.87	9E-03
Cn						
NO	300	63	1			
N1 & N2 & N3	545	126	0.99	0.68	1.47	9.8E-01
Histological grade						
1&2	351	39	1			
3	494	150	2.48	1.60	3.92	6.6E-05
ER status						
Negative	487	159	1			
Positive	358	30	0.24	0.15	0.40	2E-08
HER2 status						
Negative	729	147	1			
Positive	116	42	2.41	1.48	3.92	4E-04
Treatment						
Anthracyclines	293	61	1			
Anthracyclines&						
taxanes	552	128	1.39	0.73	2.67	3.2E-01
Study						
EORTC10994	103	45	1			
I-SPY-1	57	11	0.62	0.25	1.51	3E-01
LBJ/IN/GEI	47	7	0.59	0.20	1.61	3.2E-01
MAQCIII	60	18	1.39	0.61	3.14	4.3 E-01
MAQCII/ MDACC	265	57	0.56	0.29	1.05	7E-02
MDACC trial	146	18	0.35	0.17	0.68	2E-03
TOP	109	15	0.16	0.07	0.35	4.7E-06
USO-02103	58	18	1.18	0.51	2.74	7E-01

All patients, multivariate

~ -

А

ALL (845 pts, 189 pCR)

	OR	95% C	X P	FDR	
GGI	1.7	(1.12,2.6)	1.3E-02	3.7E–02	
Gene70	2.02	(1.29,3.2)	2.4E-03	1.3E–02	
CIN70	1.61	(1.08,2.42)	2.1E-02	5.1E–02	
Stroma1	0.73	(0.49,1.06)	1.0E–01	2.1E–01	_
Stroma2	0.74	(0.5,1.07)	1.1E–01	2.1E–01	
Immune1	1.92	(1.36,2.73)	2.2E-04	3.7E-03	
Immune2	1.78	(1.25,2.53)	1.3E-03	1.1E–02	
RAS	0.82	(0.57,1.18)	3.0E–01	4.9E–01	-
MAPK	0.85	(0.56,1.27)	4.2E–01	6.0E–01	-
PTEN	1.75	(1.18,2.62)	5.8E-03	2.5E-02	
AKTmTOR	0.84	(0.59,1.19)	3.2E–01	4.9E–01	-
PIK3CA	1.01	(0.67,1.53)	9.5E–01	9.5E–01	
IGF1	0.97	(0.65,1.45)	8.9E–01	9.5E–01	-
SRC	1.02	(0.71,1.47)	9.1E–01	9.5E–01	-
MYC	1.1	(0.78,1.56)	5.8E–01	7.6E–01	-
E2F3	1.6	(1.12,2.3)	1.1E–02	3.7E-02	
BetaCatenin	0.98	(0.68,1.43)	9.4E–01	9.5E–01	-

÷.

OR: odds ratio, FDR: false discovery rate

Odds Ratio

0.25 1 5 10 20 Odds Ratio

Salanan Salanan Salanan

Ø.

ANTIMAR .

RAS

IGF1

SRC

MYC

В

GGI Gene70 CIN70 Stroma1 Stroma2 Immune1 Immune2 RAS MAPK PTEN AKTMTOR PIK3CA IGF1 SRC	OR 1.59 2.11 1.47 0.65 0.66 1.76 1.49 0.77 0.81 1.71 0.84 1 0.79 1.02	95% C (0.91,2.81) (1.12,4.03) (0.88,2.47) (0.38,1.08) (0.4,1.08) (1.13,2.76) (0.96,2.31) (0.5,1.19) (0.47,1.38) (1.04,2.85) (0.54,1.3) (0.55,1.8) (0.46,1.34) (0.46,1.34)	P 1.0E-01 2.2E-02 1.4E-01 9.7E-02 9.9E-02 1.3E-02 7.4E-02 2.4E-01 4.3E-01 3.7E-02 4.3E-01 9.9E-01 3.8E-01 9.5E-01	FDR 2.2E-01 1.6E-01 2.2E-01 2.2E-01 2.2E-01 2.2E-01 4.1E-01 5.7E-01 9.9E-01 5.7E-01 9.9E-01	┝┿╋╪╪ ╪╪ ^{┿╋┿} ╋╈╋╋┿┿┿┿┿
PIK3CA IGF1 SBC	1 0.79 1.02	(0.55, 1.8) (0.46, 1.34) (0.62, 1.65)	9.9E-01 3.8E-01	9.9E-01 5.7E-01	
MYC E2F3 BetaCatenin	1.13 1.67 1.12	(0.73, 1.75) (1.06, 2.67) (0.69, 1.82)	5.7E-01 2.9E-02 6.4E-01	6.9E-01 1.6E-01 7.3E-01	

5 10 20 0.25 1

Odds Ratio

ER+/HER2

(335 pts, 27 pCR)

	OR	95% C	N P	FDR	1	
GGI	3.19	(1.26,8.72)	1.8E-02	1.0E-01	-	
Gene70	3.43	(1.25,9.66)	1.8E-02	1.0E-01	_	
CIN70	3.38	(1.31,9.35)	1.4E-02	1.0E-01	-	
Stroma1	1.05	(0.45,2.42)	9.1E-01	9.1E-01		
Stroma2	1.33	(0.57,3.1)	5.1E-01	6.7E-01		
Immune1	1.4	(0.59,3.15)	4.3E-01	6.1E-01		
Immune2	1.71	(0.7,4.17)	2.4E-01	4.4E-01		
RAS	1.81	(0.64,5)	2.6E-01	4.4E-01		
MAPK	0.86	(0.32,2.16)	7.5E-01	8.5E-01		
PTEN	3.06	(1.1,8.94)	3.5E-02	1.2E-01	_	
AKTmTOR	1.78	(0.66,5.02)	2.6E-01	4.4E-01		
PIK3CA	0.84	(0.38,1.83)	6.6E-01	8.0E-01		_
IGF1	1.78	(0.65,4.96)	2.6E-01	4.4E-01		
SRC	0.63	(0.23,1.63)	3.5E-01	5.4E-01		
MYC	1.07	(0.41,2.73)	8.9E-01	9.1E-01		
E2F3	2.56	(1.14,5.97)	2.5E-02	1.1E-01		-8
BetaCatenin	0.43	(0.17,1.09)	7.5E-02	2.1E-01	\leftarrow	
					 	
					0.25 1	5 10 20

Odds Ratio

Odds Ratio

Effect of age (restricted cubic splines)

A test for association (likelihood ratio test, 2 df) between the gene module and pCR and a test for non-linearity (1 df) were applied.

Harrell, Regression modelling strategies, Springer, 2011

Linearity of modules?

Thank you for your attention!

https://www.crcpress.com/9781138083776

Published May 2019

References

- Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, Gray R, Munzone E, Lemonnier J, Sotiriou C, Piccart MJ, Kellokumpu-Lehtinen PL, Vingiani A, Gray K, Andre F, Denkert C, Salgado R, <u>Michiels S</u>. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J Clin Oncol. 2019 Mar 1;37(7):559-569.
- Bidard FC, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, Caldas C, Gazzaniga P, Manso L, Zamarchi R, de Lascoiti AF, De Mattos-Arruda L, Ignatiadis M, Lebofsky R, van Laere SJ, Meier-Stiegen F, Sandri MT, Vidal-Martinez J, Politaki E, Consoli F, Bottini A, Diaz-Rubio E, Krell J, Dawson SJ, Raimondi C, Rutten A, Janni W, Munzone E, Carañana V, Agelaki S, Almici C, Dirix L, Solomayer EF, Zorzino L, Johannes H, Reis-Filho JS, Pantel K, Pierga JY, <u>Michiels S.</u> Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 2014;15:406-14
- Ignatiadis M, Singhal SK, Desmedt C, Haibe-Kains B, Criscitiello C, André F, Loi S, Piccart M, <u>Michiels S</u>⁺, Sotiriou C⁺. Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J Clin Oncol 2012;230:1996-2004